

MCT270

PACKAGE DIMENSIONS 15° MAX 8.3 6.86 MAX 6.10 15° MAX 0.3 0.2 2.33 REF

Equivalent Circuit

DESCRIPTION

The MCT270 is a phototransistor-type optically coupled isolator. A gallium arsenide infrared emitting diode is selectively coupled with an NPN silicon phototransistor.

FEATURES

- Minimum current transfer ratio of 50%
- Maximum turn-on, turn-off time 10 µ seconds specified
- Underwriters Laboratory (UL) recognized File E90700

APPLICATIONS

- Power supply regulators
- Digital logic inputs
- Microprocessor inputs
- Appliance sensor systems
- Power supply regulators
- Industrial controls

ABSOLUTE MAXIMUM RATINGS						
TOTAL PACKAGE	INPUT DIODE					
Storage temperature55°C to 150°C	Forward DC current 90 mA					
Operating temperature55°C to 100°C	Reverse voltage					
Lead tempertaure	Peak forward current					
(soldering , 10 sec)	(1 μs pulse, 300 pps) 3.0 A					
Total package power dissipation @ 25	Power dissipation 25°C ambient 135 mW					
(LED plus detector)	Derate linearly from 25°C 1.8 mW/°C					
Derate linearly from 25°C 3.5 mW/°C	OUTPUT TRANSISTOR					
	Power dissipation @ 25°C 200 mW					
	Derate linearly from 25°C 2.67 mW/°C					

ST1603A

ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
	STRIBUL	MILITA.				TEST CONDITIONS
INPUT DIODE Forward voltage	$V_{\scriptscriptstyle F}$		1.3	1.50	٧	I _F =20 mA
Forward voltage temp. coefficient	$\frac{\Delta V_F}{\Delta T_A}$		-1.8		mV/°C	
Reverse voltage	V _R	3.0	25		V	I _R =10 μA
Junction capacitance	C,	-	50 65		pF pF	$V_F = 0 \text{ V, } f = 1 \text{ MHz}$ $V_F = 1 \text{ V, } f = 1 \text{ MHz}$
Reverse leakage current	l _R		0.35	10	μΑ	V _R =3.0 V
OUTPUT TRANSISTOR DC forward current gain	h _{FE}	100	500			$V_{ce} = 5 \text{ V}, I_c = 100 \mu\text{A}$
Breakdown voltage Collector to emitter	BV _{c∈o}	30	45		V	$I_c=1.0 \text{ mA}, I_F=0$
Collector to base	ВУсво	70	130		٧	$I_c = 10 \mu A, I_F = 0$
Emitter to base	BV _{EBO}	5	7		٧	$I_E = 100 \mu A, I_F = 0$
Leakage current Collector to emitter	I _{CEO}	_	5	50	nA	$V_{CE} = 10 \text{ V, } I_F = 0$
Collector to base	I _{CBO}			20	nA	$V_{CB} = 10 \text{ V}, I_F = 0$
Capacitance Collector to emitter			8		pF	V _{CE} =0, f=1 MHz
Collector to base			20		pF	V _{CB} =5, f=1 MHz
Emitter to base			10		pF	V _{EB} =0, f=1 MHz

TRANSFER CHARACTERISTICS						
DC CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Current transfer ratio, collector to emitter	CTR _{CE}	50	115		%	$I_F = 10 \text{ mA}; V_{CE} = 10 \text{ V}$
Current transfer ratio, collector to base	CTR _{CB}	0.045	0.15		%	I _F =16 mA; V _{CB} =10 V
Saturation voltage	V _{CE(SAT)}		.21	.40	V	I _F =10 mA; I _C =2 mA

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
SWITCHING TIMES						
Non-saturated						$R_L=100\Omega$; $I_c=2$ mA;
Turn-on time	t _{on}		6.0	10	μS	_ V _{cc} =5 V
Turn-off time	t _{off}		5.5	10	μS	See Figs. 10, 11
Saturated						·
Turn-on time	t _{on}		3.9		μ S	$I_F=16$ mA; $R_L=1.9$ K Ω
Turn-off time	t _{off}		48		μS	See Figs. 10, 11
(Approximates a typical TTI	L interface)					
Turn-on time	t _{on}		3.9		μS	$I_F=16 \text{ mA}; R_L=4.7 \text{ K}\Omega$
Turn-off time	t _{off}		110		μS	See Figs. 10, 11

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Temperature Unless Otherwise Specified) (Cont'd)

ISOLATION CHARACTERISTICS							
CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
Steady state isolation	V _{iso}	7500			VAC-PEAK	l _{i-0} ≤1 μA, 1 minute	
		5300	- "	-	VAC-rms	l _{⊢o} ≤1 μA, 1 minute	
Isolation resistance	R _{iso}	10''			ohms	V _{I-0} =500 VDC	
Isolation capacitance	C _{iso}		0.5	-	pF	f=1 MHz	

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

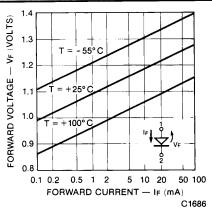
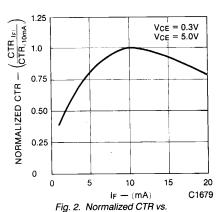



Fig. 1. Forward Voltage vs. Current

Forward Current

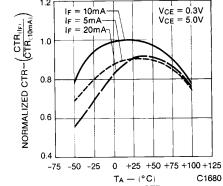


Fig. 3. Normalized CTR vs. Temperature

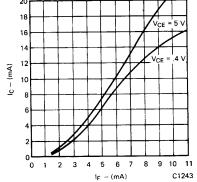
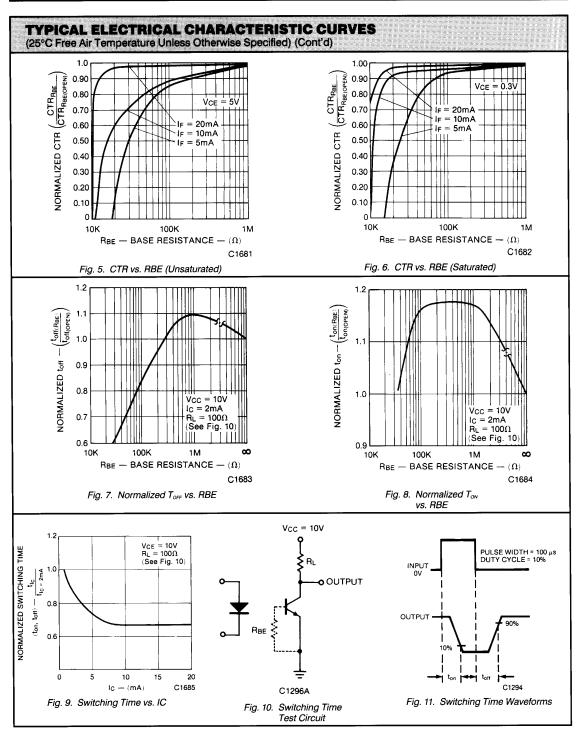



Fig. 4. Collector Current vs. Forward Current

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.